

BASF Global Supplier CO₂ Management Program -

TRAINING MODULES FOR SUPPLIERS

PCF INTRODUCTION SESSION WITH A DEEP DIVE ON BIOGENIC CARBON ACCOUNTING

NOVEMBER 2024

Sustainability is our business

© Copyright 2024 by the ERM International Group Limited and/or affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior permission of ERM.

Contents

1. Objectives

- 2. Benefits to suppliers & setting the scene
- 3. PCF calculation steps
- 4. Deep Dive: Calculation approach to consider biogenic carbon in the PCF
- 5. Q&A & next steps

Warm welcome & some housekeeping rules

Chatham House Rules: participants are free to use the insights that emerge from the session, **but neither the identity nor the affiliation of the speaker(s), nor that of any other participant, may be revealed.**

The meeting is not being recorded. We will be capturing outputs from the session but no participant details will be shared with any party, at any time for any purpose.

3

Antitrust Disclaimer

All participants of the meeting wish to ensure compliance with applicable Competition Laws. In this regard, please find below some **key rules** which apply throughout the meeting - not only during its formal sessions but also while we get together informally.

- **1.** No discussions about each other's cost of sales, sales plans, planned sales territories, cost of purchase, trade secrets, discounts, margins, rebates, credit terms, customer quotes, supplier relationships.
- 2. No discussions about pricing and other purchasing conditions in contracts.
- **3.** No exchange of other commercially sensitive information.
- **4. No** agreement not to compete.
- 5. Stay within the limits of the agenda of the meeting.

Looking forward to a productive meeting!

Today's objectives

The **main objectives** of the introduction sessions is to provide

Alignment between BASF's program and the Together for Sustainability (TfS) Scope 3 GHG Emissions Program,

Product Carbon Footprint (PCF) calculation,

Biogenic GHG emissions accounting and modelling in PCF, and

Common PCF pitfalls & lessons learned.

Your hosts for today's session

Your ERM Speakers & Hosts

Andres Rolon Managing Consultant, ERM Product Sustainability Central & Eastern Europe

Dr. Michael Spielmann Partner, ERM Product Sustainability Central & Eastern Europe

Isabelle Küchle Senior Consultant, ERM Product Sustainability Central & Eastern Europe

Your BASF Main Contacts

Dr. Norbert Mahr Director Supplier CO₂ Management Program, BASF SE

Dr. Nicola Paczkowski Carbon Steering, BASF SE

Contents

- 1. Objectives
- 2. Benefits to suppliers & setting the scene
- 3. PCF calculation steps
- 4. Deep Dive: Calculation approach to consider biogenic carbon in the PCF
- 5. Q&A & next steps

BASF objectives & benefits to participating suppliers in the training program

What are the objectives for the Training Program?

 The objectives of this training program are to get first insights into the calculation of a PCF and provide some basic information on what is needed to calculate your own PCF

What benefits do suppliers get in participating in the following introduction session?

- Understanding the context of Product Carbon Footprinting: Standards, data requirements and accounting
- Enable all BASF suppliers to provide PCF values of their products
- Enable suppliers supplying bio-based materials to consider the biogenic carbon content in the PCF calculation
- Understand the requirements and what information and data is needed to carry out these assessments
- Learn from previous experiences from peers and avoid common PCF pitfalls
- Act on the principle "only what gets measured gets managed"

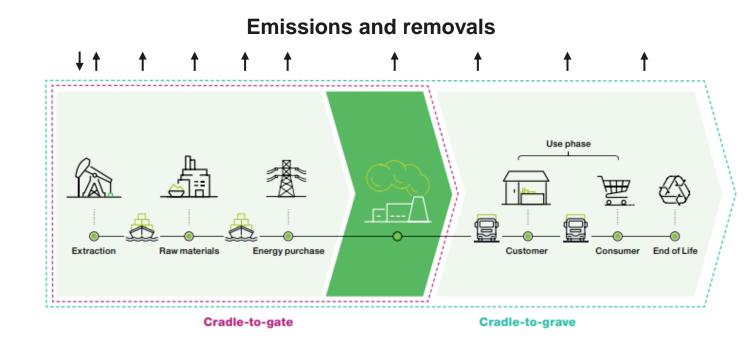
Setting the scene: PCF calculation standards

Detailed guidance for chemical products now available based on ISO 14067:2018:

Other standards

- PCF Guideline for chemical products
- Based on ISO 14067:2018
- Developed by members of TfS
- Launched in Q4 2022 and available on <u>this link</u> in different languages: English, Chinese, Japanese and Spanish. Update to be published before the end of the year.
- BASF actively contributed to the development
- Most detailed guidance for PCF calculation of chemical products

ISO 14067:2018ISO 14044:2006



- GHG Protocol Product Standard
- PAS 2050
- EPDs

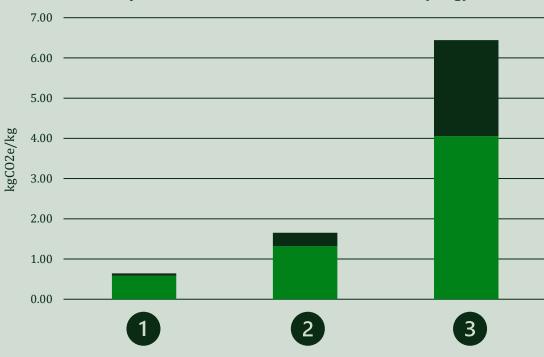
What is Product Carbon Footprint (PCF)?

- ISO 14067 definition: The "sum of greenhouse gases emissions and removals in a product system, expressed as CO₂ equivalents and based on a life cycle assessment [...]"
- From 'cradle-to-grave'
- From 'cradle-to-gate'
- Holistic

Exercise 1: Carbon footprint of some raw materials

?

1. Can you guess which footprint belongs to which raw material numbers 1-3?


Benzene,

Naphtha,

Tin

2. What is the contribution of raw material extraction and of processing towards the footprint (bright green & dark green color)?

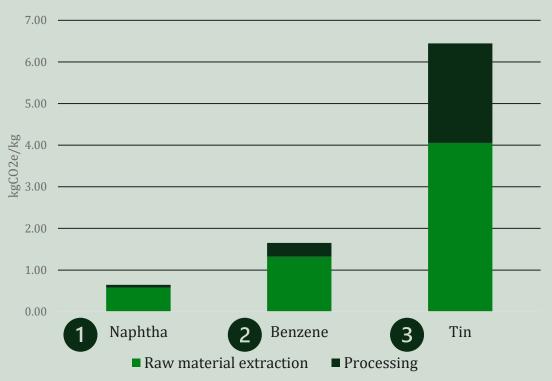
Life Cycle GHG emissions of raw materials (1 kg)

■ Raw material extraction ■ Processing

Exercise 1: Carbon footprint of some raw materials

?

1. Can you guess which footprint belongs to which raw material numbers 1-3?


Benzene,

Naphtha,

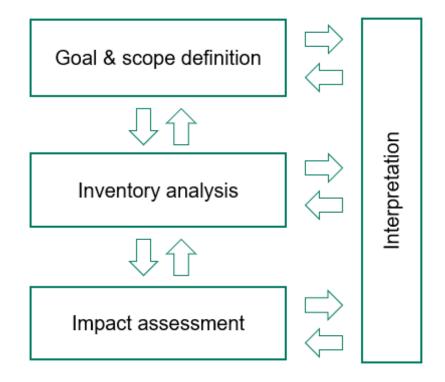
Tin

2. What is the contribution of raw material extraction and of processing towards the footprint (bright green & dark green color)?

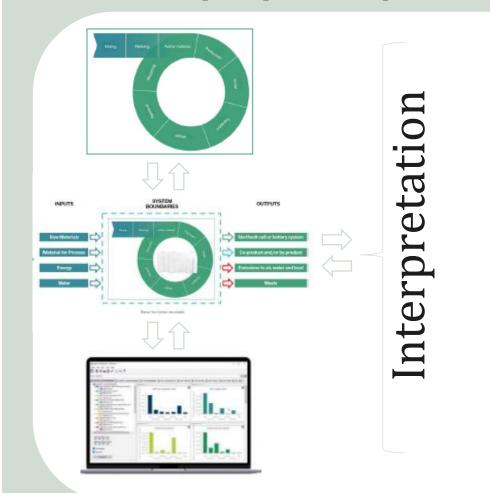
Life Cycle GHG emissions of raw materials (1 kg)

ERM PCF Introduction Session

Contents


1. Objectives

- 2. Benefits to suppliers & setting the scene
- 3. PCF calculation steps
- 4. Deep Dive: Calculation approach to consider biogenic carbon in the PCF
- 5. Q&A & next steps



Conducting a PCF follows a clear structure of four key phases

ISO-Approach

Illustrative example of practical implementation

Goal and scope

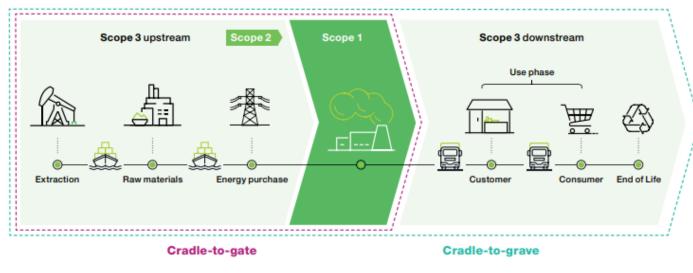
Potential goals of PCFs

- → Identify 'hot spots'
- → Guide **product development**
- **∂** Benchmark
- Ompare products alternatives
- → Product certifications, labelling, etc.
- **Transparent communication** with stakeholders
- O Support public policy decisions
- → Reduce environmental impact

Questions regarding PCF scope

- What is being **assessed**?
- **?** What is the **intended application**?
- **?** What **process stages** are included?
- In what **detail**?
- **Data sources** and **methods**?
- How are results being **reported**?
- **?** Who is the **audience**?

As PCF data collection continues, the scope may require modification to meet the original study's goal

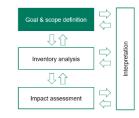


Soal & scope defini

Inventory analysis

BASF's scope definition

BASF system boundaries



Source: TfS

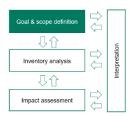
The **boundary** of the TfS guideline and this training is a **cradle-to-gate PCF.** This includes emissions from all processes and steps of **extraction, manufacturing, and transportation, until the product leaves the factory gate**.

Downstream emissions from product use & end-of-life are in general **excluded**.

The **Declared Unit** for which the PCF of a product system is calculated is **1 kg of unpackaged product at factory gate**, regardless of its state (solid, liquid, gas).

Include all product-related direct (Scope 1) and indirect (Scope 2) **GHG emissions** of the production process and related upstream activities:

- Production of related raw materials
- Consumption of utilities, energy and fuels
- Direct emissions from manufacturing and related on-site generation of utilities
- Transport of raw materials and site-to-site
- Treatment/disposal of process waste & wastewater


Exclude the following activities

- R&D activities, infrastructure services, other services such as engineering
- Business travel, employee commuting
- Capital and technical goods
- All downstream activities (i.e., use & EoL)

Optional (separately reported)

• Packaging and outbound logistics

BASF's data quality requirements follow industry standards & best-practice

Temporal

Most recent data (not older than 3 yrs) covering 12 calendar months

Complete

Only use cut-offs where necessary

Geographical

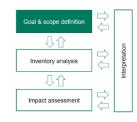
Production & emission data from **relevant locations**

Consistent

Check for deviation with last year's data

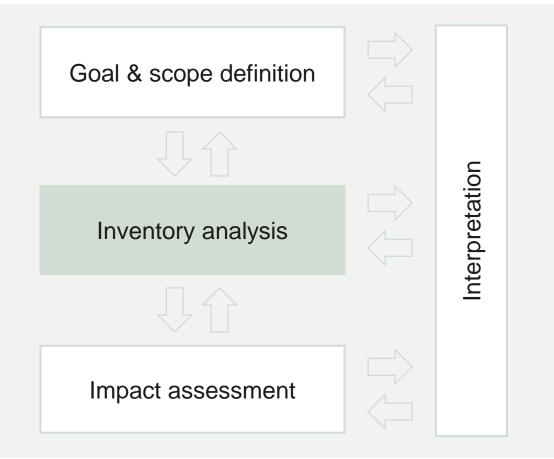
Technological

Data from the production
 plant(s) with the technology used to produce BASF's raw material

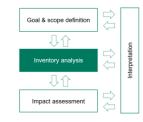

Precise & Reliable

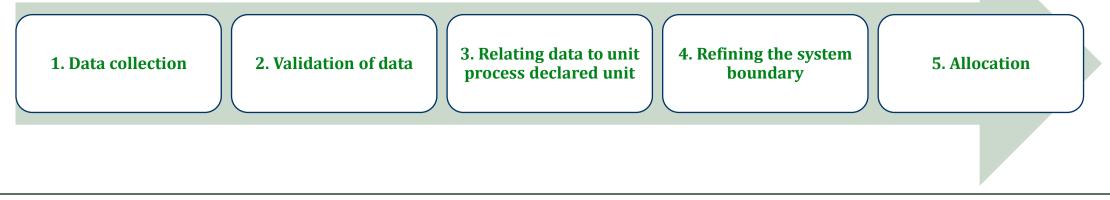
Measured/calculated data based on internal production data & verified by **(internal) reviewer**

Lessons learned: Goal & scope definition

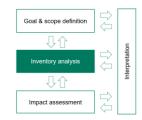

Based on the data received from suppliers so far, some common pitfalls for this first phase "goal & scope definition" include:

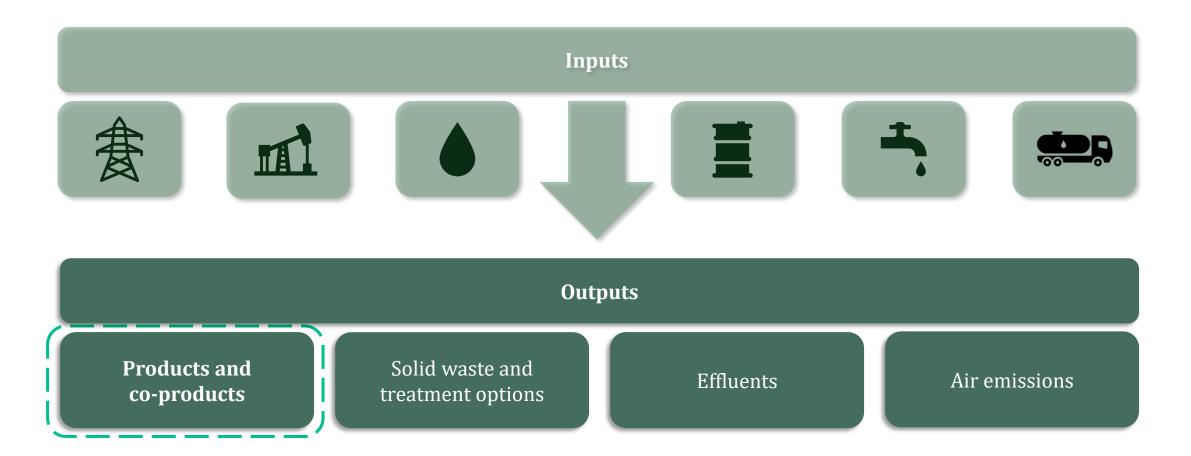
- Standard to be used: Follow TfS Guideline based on ISO standard 14067:2018
- Scope: Cover all product-related GHG emissions and removals from cradle-to-gate (not "gate-to-gate")
- **Declared unit:** Refer to **1 kg of unpacked product**
- Data quality: Use data of high quality and good representativeness that is up-to-date and reflect the geography and the technology that is specific to the product that you supply to BASF


PCF Phase 2: Inventory Analysis



5 steps within the inventory analysis




ISO 14067:2018 requirement

- Life cycle inventory (LCI) analysis is the phase of LCA involving the compilation and quantification of inputs and outputs for a product throughout its life cycle
- After the goal and scope definition phase, the LCI of a PCF study shall be conducted
- This consists of the following steps, adapted from ISO 14044, which shall apply when relevant:

Data collection for the inventory analysis

Primary vs secondary data

Primary Data

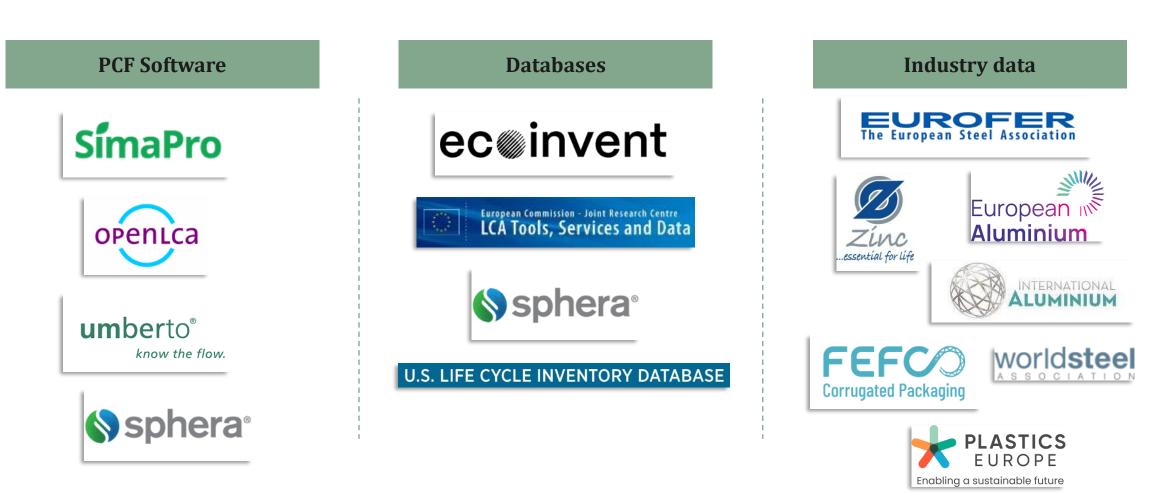
Definition: **Primary data** are used to describe the **elements of a product system,** which are directly **under the decisionmakers' control**

Sources - From process operators and drawn from:

- Production data
- Energy & raw material accounting
- Emissions and waste reporting
- Financial reporting
- Equipment specifications

Secondary Data

Definition: **Secondary data** are used to describe **elements of the life cycle** which **originate from the open market,** e.g., electricity, commodity materials and fuels etc.


Sources - External sources (*in order of preferred use*):

- LCI databases (e.g., ecoinvent, GaBi, US LCI Database, Product Environmental Footprint)
- Industry associations (e.g., PlasticsEurope, Worldsteel, International Aluminium Institute)
- Scientific publications

Commonly used (industry) databases & software

Goal & scope definition

Inventory analysis

Impact assessment

Allocation hierarchy

1. Allocation methods in line with published & accepted **product category rules (PCR)**

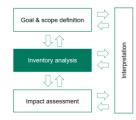
2. Application of process subdivision

3. Application of **economic values of co-products** as criterion to decide between physical & economic allocation(*):

Price Product 1 (max) Price Product 2 (min) > 5?

4. If the economic values ratio is higher than 5, the CO₂ eq impact shall be allocated with economic allocation approach.

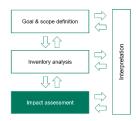
5. If the economic values ratio is lower than 5, the CO₂ eq impact shall be allocated with the default allocation approach: physical allocation.

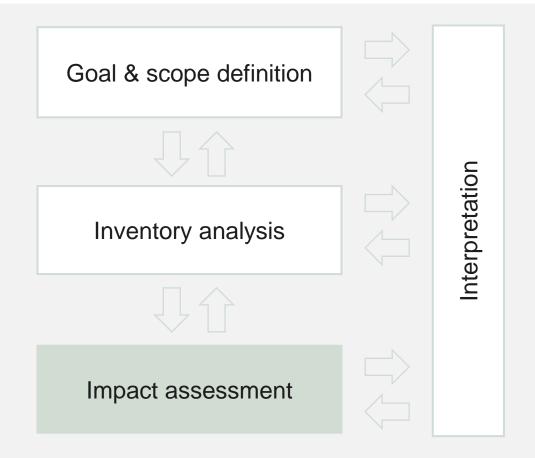

(*)Economic allocation factors should be calculated based on stable market prices, as yearly average or over multiple years in case of high fluctuation (e.g., >100%) of prices.

Goal & scope definition

- The correct application of allocation rules is crucial for calculating a PCF
- The allocation hierarchy defined by TfS must be followed for PCF calculation
- See decision-making tree for allocation rules, TfS guideline, p.64
- Examples are provided in the TfS guide.

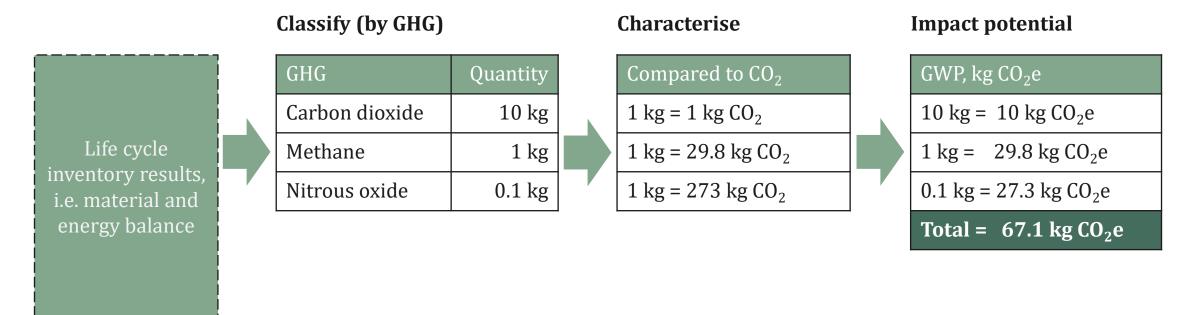
Lessons learned: Inventory analysis



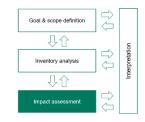

Based on the data received from suppliers so far, some **common pitfalls** for this second phase "inventory analysis" include:

- Questionable databases:
 - > PCF values of raw materials are taken from **non-acceptable data sources** (e.g., non-verified databases, the internet).
 - PCF values from LCA databases are only accepted for **purchased goods**, **not for own controlled processes**. This should be calculated based on own company data.
 - > Data from **free databases** are **often insufficient**, as there are no data updates and the derivation of datasets is unclear
- Proportion of supplier-specific data for raw materials: It is often claimed that the data for raw materials are 100% supplier-specific. However, in many cases ecoinvent or Gabi values are then used for own purchased raw materials rather than real supplier-specific data. For raw materials and utilities (Scope 3) consider either supplier-specific PCF data (preferably) or PCF data from LCA databases.
- Incorrect primary data: Consider primary data for all processes under your ownership (Scope 1) and market-based emission factors for purchased energy (Scope 2).
- Incorrect secondary data: Secondary data used must at least have correct geographical reference, e.g., productions in China with an upstream chain from China should not/must not be calculated with LCI data from Europe, at least not if the contribution is >5%.

PCF Phase 3: Impact Assessment

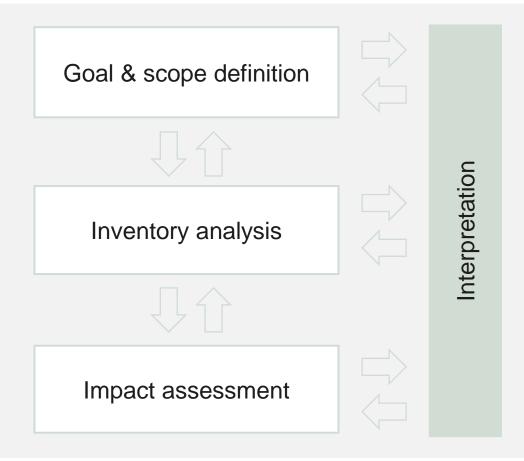


Impact assessment

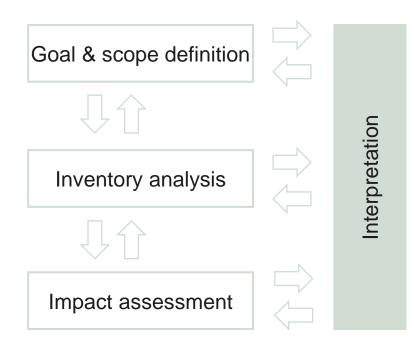


- Impact assessment follows a three-step conversion to compare GHG emissions and impacts.
- During the process, **all GHG emissions** are converted into a **single impact category result** in terms of **Global Warming Potential (GWP)** or 'Carbon Footprint' reported as **kg CO**₂**e** (CO₂-equivalents).
- **Assigning flows to impacts** is known as **classification**. **Software automatically** perform this exercise.

Lessons learned: Impact assessment


Based on the data received from suppliers so far, some common pitfalls for this third phase "impact assessment" include:

- Submission of incorrect PCF values: either very low or extremely high PCF values are being submitted, potentially due to using the wrong units (kg CO2e/t Product instead of kgCO2e/kg Product)
- Application of incorrect CO2 emission factors for electricity and steam: regarding the emission factors used, it is important to keep in mind that the upstream value chain must be included in those (instead of using only the market-based equivalent factors from the utility company)
- Biogenic emissions: further explanations are needed for calculating PCFs including / excluding biogenic CO2 emissions and removals. If your product is based on biomass, please separately report the PCF including biogenic emissions and removals, by considering the CO2 assimilation (CO2 removal) and any biogenic emissions.



PCF Phase 4: Interpretation

Interpretation of the results as the final step of PCF

Goal & scope definition

Interpretation includes:

- Identification of the significant issues based on the results of Inventory Analysis and the Impact Assessment phases
- An evaluation that considers completeness, sensitivity and consistency checks
- Conclusions, limitations, and recommendations

Interpretation may prompt iteration of the assessment

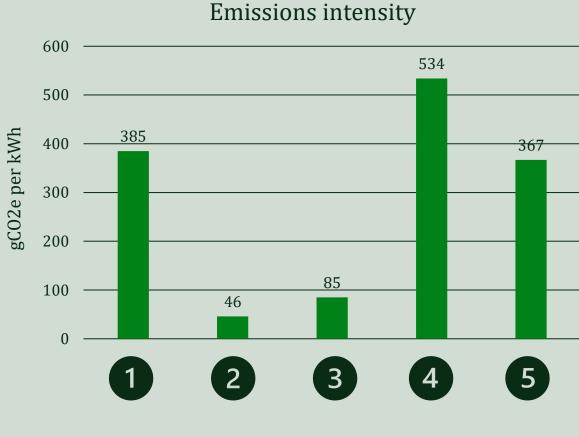
Lessons learned: Interpretation

Based on the data received from suppliers so far, some common pitfalls for this last phase "interpretation" include:

Critical Review:

- It should become evident from the critical review statement that it refers to the product in question and it should refer to ISO 14067 or another **product-based calculation standard**, not a corporate standard.
- If suppliers have a critical review/PCF report, please upload them to the PCF data platform.
- We recommend a critical review of your PCF calculation by a third party.

Exercise 2: Carbon footprint of national electric grids



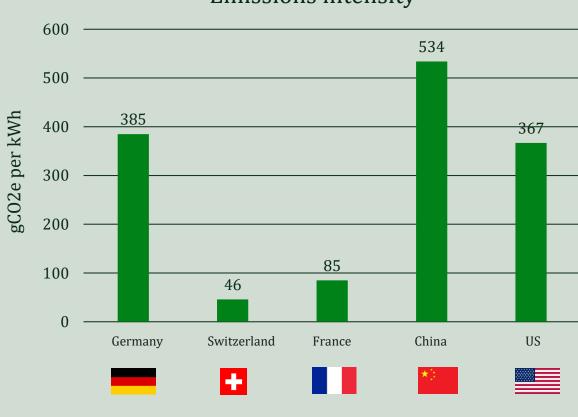
Which of the bars (numbers 1-5) represents the power mix for the following countries:

- China
- Germany
- Switzerland
- US
- France

And why?

Source: <u>Ember</u>

Exercise 2: Carbon footprint of national electric grids



Which of the bars (numbers 1-5) represents the power mix for the following countries:

- China
- Germany
- Switzerland
- US
- France

And why?

Source: <u>Ember</u>

Emissions intensity

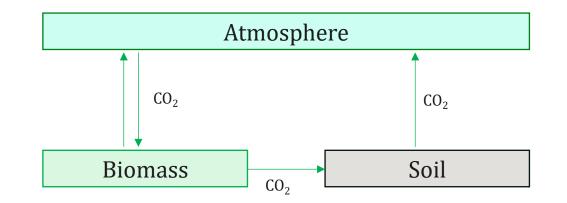
Contents

1. Objectives

- 2. Benefits to suppliers & setting the scene
- 3. PCF calculation steps
- 4. Deep Dive: Calculation approach to consider biogenic carbon in the PCF
- 5. Q&A & next steps

Background: Important Definitions & The Biogenic Carbon Cycle

Definitions


- **Biomass**: material of biological origin, e.g., trees, crops, grasses, tree litter, algae, animals, manure.
- **Biogenic carbon content**: Fraction of carbon derived from biomass in a product.
- Biogenic emissions: e.g., CO₂emissions from combustion or biodegradation of biomass (other biogenic emissions include e.g. CH₄ from enteric fermentation or N₂O from bio-based fertilizers).

• Biogenic sequestration:

Sequestration/removal/uptake of CO_2 from the atmosphere (i.e., CO_2 absorption by biogenic materials during photosynthesis).

Biogenic carbon cycle

- **CO**₂ **is absorbed** from the atmosphere during **photosynthesis** (plants use sunlight to convert CO₂ and water into carbohydrates and oxygen, **storing carbon** as carbohydrates). This is a **unique** feature of **biomass** and **reduces CO**₂ in the atmosphere.
- Biomass, and embiodied **biogenic carbon**, can be **transformed into products**, representing a **CO**₂ **removal** as long as it is kept out of the atmosphere.
- **Biogenic carbon can be released** through cellular respiration, animal ventilation or burning of plants / bio-based products (e.g., as biogenic CO₂ or biogenic CH₄).
- Biogenic carbon is stored over a shorter time (<1-500 yrs) than fossil carbon (>10,000-millions of yrs), nevertheless biogenic and fossil emissions have the same effect when released to the atmosphere.

Use of biogenic carbon in the chemical industry & its accounting

Different PCF standards have different accounting requirements for biogenic carbon

Application in the chemical industry

- The chemical industry uses biogenic carbon from bio-based materials to reduce the Product Carbon Footprint of products.
- The benefit of products using bio-based materials is that they contain biogenic carbon from CO₂ removed from the atmosphere which is stored in these products until it is released back into the atmosphere (e.g., at end of life through incineration or biodegradation).
- **This benefit** of removing and keeping CO₂ from/out of the atmosphere **shall be considered in PCF** calculations.

Accounting of biogenic carbon (uptake and emissions) in PCF

ISO 14067 and Together for Sustainability (TfS)*

- Consider biogenic CO₂ removals when entering the product system as "negative emissions" and biogenic emissions (e.g., if generated at the End of Life stage as "positive emissions").
- This allows **accounting for the benefit of biogenic carbon** materials in the respective product lifecycle.

EC Product Enfironmental Footprint (PEF 2021)

- Does not consider biogenic CO₂ emissions nor CO₂ removals but considers them as neutral.
- Does consider **biogenic CH**₄ emissions.

^{*} TfS requirements are aligned to ISO 14067. The GHG Protocol Product Standard, as ISO 14067, also considers biogenic CO_2 removals and emissions.

Accounting of biogenic CO₂ according to ISO 14067 and TfS

Counting both, biogenic CO_2 uptake and emissions using the -1/+1 method

Using the "-1/+1" method

- The following emissions and removals shall be included in the PCF
 - Biogenic CO₂ uptake during biomass growth (CO₂ removal)
 - All **biogenic emissions** (e.g., CH₄ from manure application)
 - Further emissions from relevant processes, such as cultivation, production and harvesting of biomass
- The following indicators shall be reported / reflected
 - **Total carbon content & biogenic carbon content*** in products
 - Fossil and biogenic GHG emissions
 - Biogenic GHG removals (CO₂ uptake during biomass growth)

*If the mass of biogenic carbon containing materials in the product is less than 5% of the mass of the product, the declaration of biogenic carbon content may be omitted

Report two PCF values as required in ISO 14067

- a) PCF (**including** biogenic CO₂ removal)
- b) PCF (**excluding** biogenic CO₂ removal)

The **difference in emissions** between a) and b) is the **net carbon uptake** (carbon stored in the product given by the carbon content in the product's molecule).

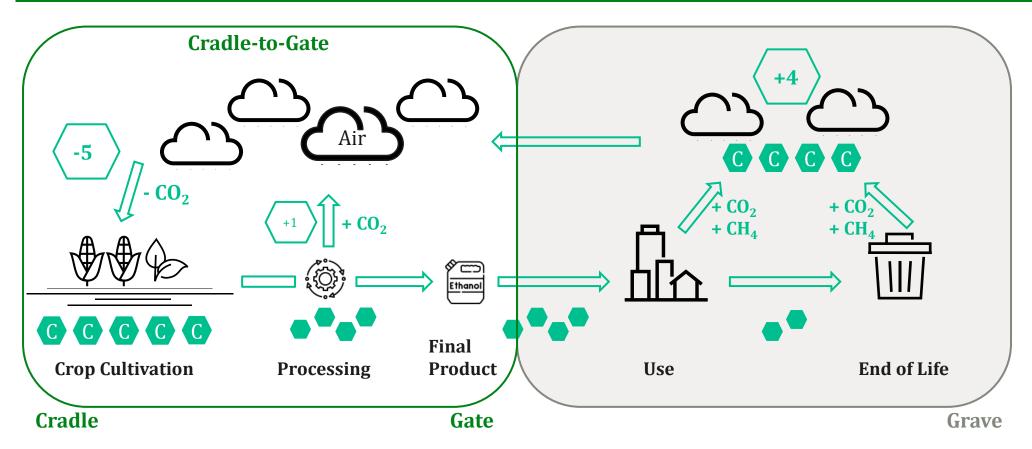
Global Warming Potential

Global Warming Potential of different Greenhous Gases

- All **Greenhouse Gases** (e.g., CO₂, CH₄ and N₂O) have **varying lifetimes and potencies** that define their impact on the climate beyond their pure "mass" (e.g., kg of CH₄ emitted into the atmosphere).
- Each GHG has a global warming potential (GWP) its relative potency as an agent of climate change compared to CO₂ over a specified time interval.
- Non-CO₂ emissions or a sum of multiple GHG emissions are often expressed in carbon dioxide equivalents (CO₂e), which is calculated by multiplying the mass of a non-CO₂ GHG by its GWP (CO₂e expresses the amount of carbon dioxide that would have the same climate impact over a specified time horizon. If the time horizon is not specified, it is usually 100 years).
- This enables **comparison** of the climate impact of various greenhouse gases.

GWP values are provided by the **Intergovernmental Panel on Climate Change (IPCC).** The table below shows the 100-year values of the IPCC's Sixth Assessment Report (AR6; published in 2023). TfS advises to use these GWP values.

GHG	CO ₂	CH ₄ – non fossil	CH ₄ – fossil	N ₂ 0	NF ₃	SF ₆
GWP AR6	1	27	29.8	273	17,400	24,300


Source: IPCC - Chapter 7: The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity | Climate Change: The Physical Science Basis (Section 7.6.1.1, Table 7.15)

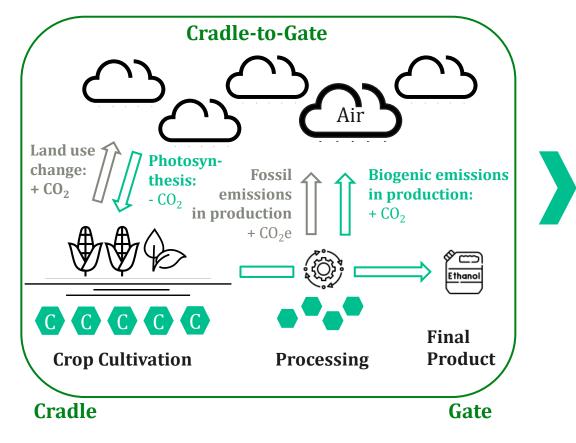
Accounting of biogenic CO₂ according to ISO 14067

Counting both, biogenic uptake and biogenic emissions using the -1/+1 method

-1/+1 approach of considering biogenic carbon

- BASF suppliers must deliver **cradle-to-gate PCFs** (left part of the figure).
- Where the emissions occur, and which ones, depends on the type of bio-material and the market.
- Right part of the figure (gate-to-grave) shows the **downstream life cycle stages** (no BASF suppliers' operations).
- The "-**1/+1-balance**" refers to the **carbon content.**

Cradle-to-Gate Biogenic Carbon Uptake: **-5+1 = -4**


Gate-to-Grave Biogenic Carbon Release: +4

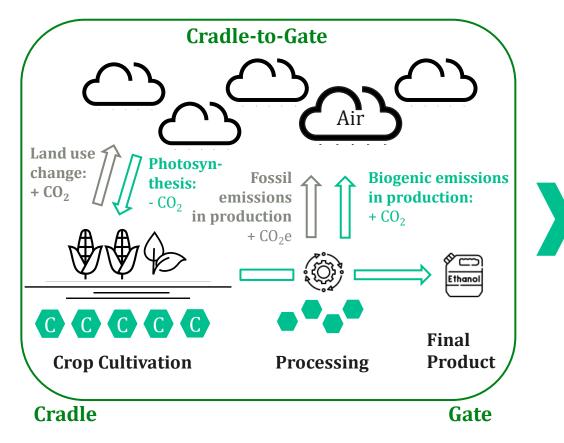
- e.g., if studying ethanol being used as a fuel, the emissions occur during combustion in the use phase
- e.g., if studying a bioplastic, the emissions will occur at EoL

Accounting of biogenic CO₂ according to ISO 14067

How biogenic uptake and emissions are accounted for in a cradle-to-gate PCF will be explained using the example of ethanol production

Crop cultivation:

- CO₂ is absorbed via **photosynthesis during crop growth** (e.g., starches such as corn and sugars such as sugar cane).
- Emissions occur due to land use and **land use change** (e.g., conversion of a forest into agricultural land).


Processing / production of ethanol

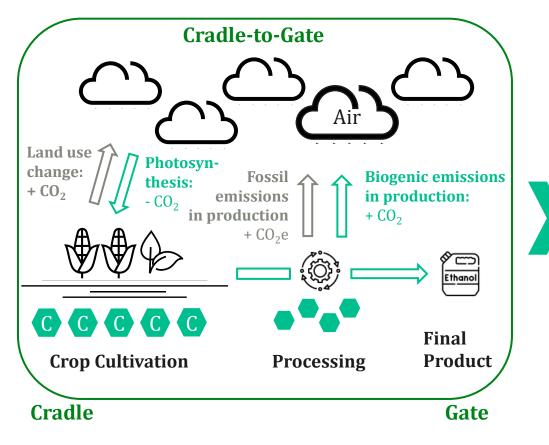
- **Biogenic CO₂ emissions** are released during the production (e.g., fermentation of starches and sugars)
- **Fossil emissions** are released, e.g., by consuming electricity and fuels **Final product: Ethanol (C₂H₆O)**
- As an **organic substance**, ethanol (**C**₂H₆O) **stores carbon**, **two atoms** per molecule.
- The amount of the **initial carbon uptake must be corrected** as the carbon uptake must account for the **biogenic emissions released during production** of ethanol (e.g., carbon stored in the corn plant that is not transformed into ethanol).
- This "carbon uptake correction" must be done so that the net carbon uptake (difference betw. the PCF result incl. biogenic CO₂ removal & the one excl. biogenic CO₂ removal) equals the amount of carbon stored in the product given by the carbon content in the product's molecule.

Accounting of biogenic CO_2 according to ISO 14067 – Example (1/4)

How biogenic uptake and emissions are accounted for in a cradle-to-gate PCF will be explained using the simplified example of ethanol production

-1/+1 approach of considering biogenic CO₂

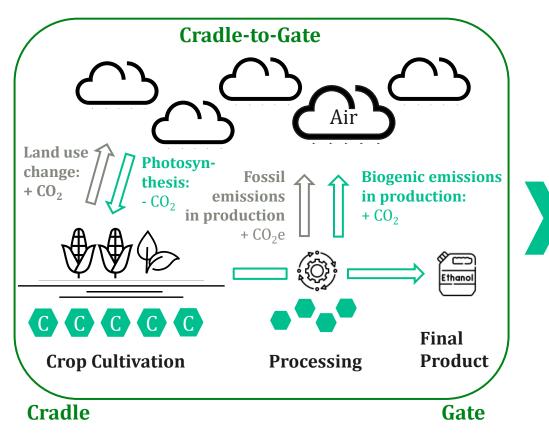
Reporting PCF results with biogenic materials per 1kg of ethanol (C₂H₆O)


Indicator	Unit per kg ethanol	ISO 14067, TfS	Calculation / Source	
A) Biogenic carbon in products	kg biogenic C	0.522		
B) Equivalent biogenic carbon removal in product	kg CO ₂	-1.91		
C) Equivalent biogenic carbon overall removal	kg CO ₂	-2.31	Values are either calculated or retreived from a	
D) Emissions, land use and direct land use change	kg CO ₂ e	0.2	background LCI database	
E) Of that is direct land use change	kg CO ₂ e	0.1	(secondary data) Details will be	
F) Emissions, biogenic	kg CO ₂ e	0.4	explained on the following slides	
G) Emissions, fossil	kg CO ₂ e	2.0		
H) Cradle-to-gate emissions	kg CO ₂ e	= -2.31 + 0.2 + 0.4 + 2 = 0.29		

Accounting of biogenic CO_2 according to ISO 14067 – Example (2/4)

A) Biogenic carbon content in ethanol and B) equivalent biogenic carbon removal

-1/+1 approach of considering biogenic CO₂

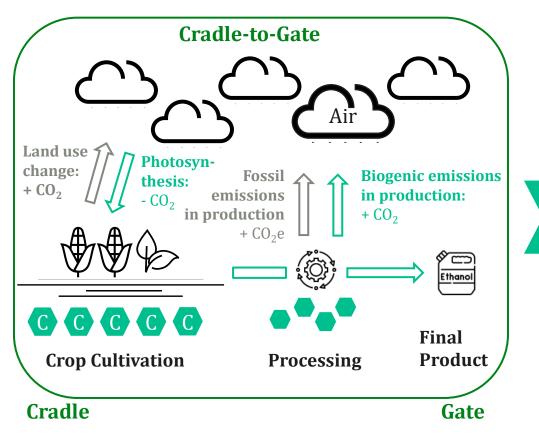

Reporting PCF results with biogenic materials per 1kg of ethanol (C_2H_6O)

Indicator	ISO 14067, TfS	Formula & Calculation
A) Biogenic carbon in product in <i>kg biogenic C</i> (per kg of ethanol)	0.522	Calculating the carbon content in ethanol using the number of C atoms in ethanol and molecular weights: (# carbon atoms in ethanol*molecular weight of carbon) molecular weight of ethanol (2 * 12) 46 = 52.17% → 1kg ethanol contains 0.522 kg carbon (100% of the carbon is biogenic)
 B) Equiv. biogenic carbon removal in product in kg CO₂ (per kg of ethanol) 	-1.91	Converting carbon from A) into CO_2 using atomic mass units: $\frac{amu_{CO2}}{amu_{carbon}} * 0.522 \text{kg} = \frac{44}{12} * 0.521 \text{kg} = 1.91 \text{kg} CO_2$ \rightarrow Per kg of ethanol, 1.91 kg of biogenic CO ₂ are removed from the atmosphere (removal is expressed as negative)

Accounting of biogenic CO₂ according to ISO 14067 – Example (3/4) C) Equivalent biogenic carbon overall removal

-1/+1 approach of considering biogenic CO₂

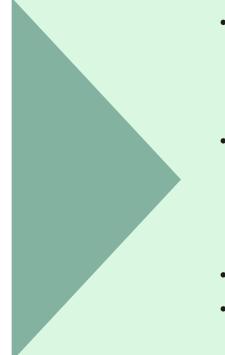
Reporting PCF results with biogenic materials per 1kg of ethanol (C₂H₆O)


Indicator	ISO 14067, TfS	Formula & Calculation
C) Equiv. biogenic carbon overall removal in kg CO ₂ (per kg of ethanol)	-2.31	Sum of B (-1.91kg) and additional CO ₂ uptake corresponding to biogenic CO ₂ emissions released in production ("carbon correction"): Biogenic CO ₂ emissions per kg ethanol: 0.4kg CO ₂ e (retreived from a background database) \rightarrow Per kg of ethanol, an additional 0.4kg of biogenic CO ₂ are removed from the atmosphere In sum, that is a total biogenic CO ₂ uptake of: B + C = -1.91 - 0.4 = -2.31 kg CO ₂
D) Emissions, land use and direct land use change in kg CO ₂ e (per kg of ethanol)	0.2	Secondary data retreived from a background database

Accounting of biogenic CO_2 according to ISO 14067 – Example (4/4)

D & E) Land use (change) emissions, F) Biogenic emissions, G) Fossil Emissions and H) Overall Emissions

-1/+1 approach of considering biogenic $\rm CO_2$


Reporting PCF results with biogenic materials per 1kg of ethanol (C_2H_6O)

Indicator	ISO 14067, TfS	Formula & Calculation
E) Of that is direct land use change in $kg CO_2 e$	0.1	The fraction of emissions from D that are due to direct land use change. Secondary data retreived from a background database
(per kg of ethanol) F) Emissions, biogenic in kg CO ₂ e (per kg of ethanol)	0.4	Value of biogenic emissions in C: 0.4kg CO₂e Secondary data retreived from a background database
G) Emissions, fossil in <i>kg CO2e</i> (per kg of ethanol)	2.0	Secondary data retreived from a background database
H) Cradle-to-gate emissions in <i>kg CO</i> 2e (per kg of ethanol)	0.29	C + D + F + G = Overall biogenic CO_2 removal + LUC emissions + biogenic emissions + fossil emissions = -2.31 + 0.2 + 0.4 + 2 = 0.29kg CO_2e

Accounting of biogenic CO₂ according to ISO 14067

Summary & Lessons Learned

- The amount of CO₂-uptake stored in products containing bio-based materials shall be accounted for in cradle-to-gate Product Carbon Fooprints, specifically as "negative emissions" as the CO₂-uptake represents a removal of CO₂ from the atmosphere (for as long as it is stored in the respective product). This is required by ISO 14067 and by TfS, which is aligned to ISO 14067.
- The **total CO₂-uptake** from the atmosphere per kg of material is **calculated based on the sum** of:
 - **1. CO**₂ **based on the amount of C-atoms** in the material (then deriving CO₂ based on molecular weights and atomic mass units)
 - 2. CO₂ based on the biogenic CO₂ emissions during the production of the material
- The **net CO₂-uptake*** is equal to the amount of carbon stored based on the # of C-atoms per molecule.
- **Other indicators** to be reported can be retreived from **background databases** used (e.g., land use and land use change emissions, fossil emissions)

* Net CO₂-uptake: The difference between the PCF result incl. biogenic CO₂ removal & the PCF result excl. biogenic CO₂ removal

Contents

1. Objectives

- 2. Benefits to suppliers & Setting the scene
- 3. PCF calculation steps
- 4. Deep Dive: Calculation approach to consider biogenic carbon in the PCF
- 5. Q&A & next steps

Q&A and next steps

In case you have **questions before/during/after your PCF calculation**, please do not hesitate to get in touch with **supplier-carbon-footprint@basf.com**

Thank you

Dr. Michael Spielmann

Partner, Product Sustainability

michael.spielmann@erm.com

Andres Rolon

Managing Consultant, Product Sustainability

andres.rolon@erm.com

Isabelle Küchle

Senior Consultant, Product Sustainability <u>isabelle.kuechle@erm.com</u>

Sven Lundie

Partner, Corporate Sustainability & Climate Change

sven.lundie@erm.com

